

Grand Sunergy Co.,Ltd.

Web : www.grandsunergy.com Email: sales@grandsunergy.com

TECHNOLOGY RE-BUILDS THE FUTURE

ZCase Studies on HJT Advantage

A RoadMap

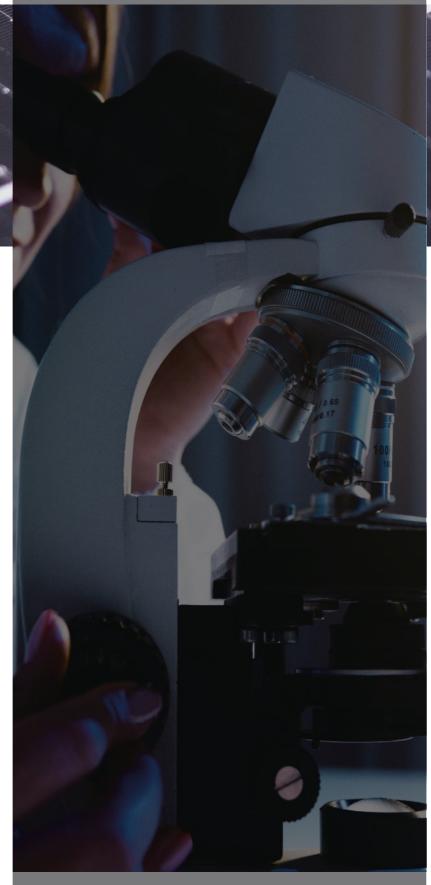
5 Product Profile

ABOUT OUR COMPANY

Founded in early 2022, Grand Sunergy is specializing in the Research & Development, manufacture, and trading of high efficiency HJT photovoltaic cells and modules. The company has established two production bases in China, with capacity 3.5GW of Module and 1.5GW of HJT cell by 2023.

Grand Sunergy has established a strong R&D team, to develop the HJT technology's Cost Reduction, New Material Introduction, Technical Parameters Improvement much further.

3.5**GW** capacity of Module


1.5**GW**

capacity of HJT cell

R&D

The Research Institute working together with Shanghai Jiao Tong University Solar Energy Research Institute conducts the various Research Subjects from different angles, including the new materials and technologies, manufacturing techniques, equipment improvements and so on. We strongly believe Science and technology is the first productive force in company's development.

Zhongwei Zhang **CEO**

Doctor of Microelectronics and Solid State Electronics of East China Normal University

Wenzhong Shen **Director of Grand Sunergy Research Institute**

Doctor of Shanghai Institute of Technical Physics Chinese Academy of Sciences Professor of Shanghai Jiao Tong University

Wenbin Zhang СТО

Doctor of Shanghai Institute of Ceramics Chinese Academy of Sciences

Research Institute

Cell research Team

Focus on HJT cell efficiency and reliability improvement

Module research Team

Solve the challenges and difficulties on HJT module production, enhance the product reliability.

Perovskite Research Team

Development of Perovskite/HJT cell lamination technology

Research Team

Promote new materials research and introduction in purpose to lower HJT technology cost.

Material Application Research Team

Develop new PV application products and scenarios

Equipment Research Team

Carry on the R&D together with equipment manufacturers for better production reliability and efficiency.

Grand Sunergy Grand Sunergy

-0.26%/°C

-0.26%/°C heating coefficient of HJT cells, with 0.13%/°C advancement compare with Momoperc

Around 0.6~3.9% higher power generation per watt of HJT than bifacial PERC

85%+ bifaciality

10%-20% back irradiation and higher bifaciality contribute to 2%-4% higher power generation per watt of HJT cells than bifacial PERC cells

Higher Bifaciality Weak Light Performances

High reliability

No LID caused by B-O effect, outstanding PID resistance by TCO film, to best guarantee long-period durability and yield

High energy yield under weak light

Excellent N-type silicon wafer's yield performance under weak-light can increase power generation by 0.5-1%/Watt than bifacial Perc cells

Low Degradation

Excellent

PID& LID

Low degradation rate

1.5% first year degradation of HJT cells,0.36% for each successive year,

Around 1.9%-2.9% higher full life cycle power generation of HJT cells than bifacial PERC cells

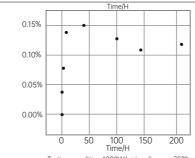
Best LCOE

A cutting-edge and most prominent technology to best reduce LCOE

HIGHER YIELD PERFORMANCE. LOWER DEGRADATION

OUTSTANDING PID &LID

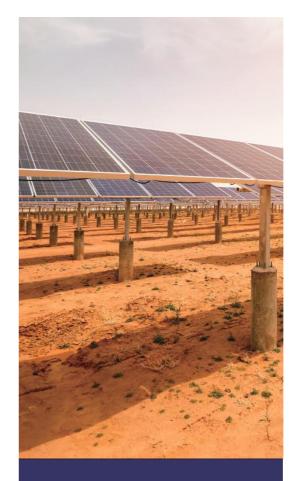
The antireflection layer that HJT cell applied is the Conductive ITO instead of the Insulate SixNy, to avoid the possibility of the Electric Conduction on cell surface, and the PID effect involved.


N-type wafer applied Boron oxygen Composite-free center, to ensure the LID free. The 1st Year degradation of HJT is 1.5%, the yearly HJT module degradation is 0.36%, much lower than the 0.45%-0.55% from Perc.

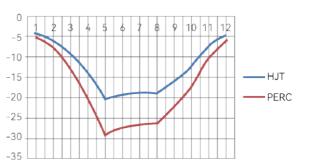
NO LID OF HJT MODULE AFTER 30H&60H 1.0% 0.5% -0.5% -1.0% 0 30h 60h Testing condition:1000W/m² irradionce:+75°C

Source:CFV SOLAR TESTLAB

NO DEGRADATION AFTER LETID TEST


Source:CIE POWER, CHINA MERCHANTS SECURITIES

Power generation gain of HJT modules


parameters	Power gain compared with PERC	note
Impact of temperature coefficient	2-6%	Cold: 2%, hot: 4-6%
NO LID	1.2-3%	Compared with better PERC
bifaciality	2%	HJT bifaciality 93%, PERC 82%
Weak light effect	0.3-1.0%	Voc of HJT: 740mv, Voc of PERC:680mv
In total	5.5-10%	

Source: PV-Tech, China Merchants Securities

HJT MODULE LOWER TEMPERATURE COEFFICIENT

Currently the Temperature Coefficient of Perc module is - 0 . 4 5 % ~ - 0 . 3 % / °C , TOPCon-0.29%~-0.28%/°C , HJT can be lowered to 0.26%/.Under High Temperature environment, the HJT module can generate more energy than other technology modules .

100MW project in Abu Dhabi

(Abscissa represents the Month, Ordinate represents Power Loss by Hours. Single Axle Track applied)

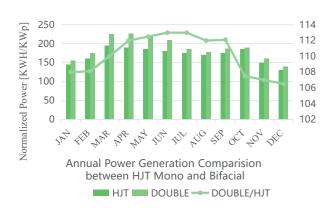
Temperature	Caused	Lost Hours	(h/Year)

Module		Yin Chuan (China)			_	Siziwang q (China)
HJT	37	38	148	38	36	29
PERC	54	56	209	54	51	42
Decent	16	17	-61	17	15	14

Temperature Caused Power Loss by Hours in Different Locations

Temperature	Caused	Power	Loss	(%/Year)	

Module	Ge'ermu	Yin Chuan	Abu Dhabi	Bortala	Chongren	Siziwang q
HJT	1.6%	1.92%	6.40%	2.02%	2.45%	1.43%
PERC	2.35%	2.88%	9.36%	3.00%	3.60%	2.20%
Decent Degree	0.8%	1.0%	3.0%	1.0%	1.20%	0.80%


Temperature Caused Power Loss Ratio in Different Locations

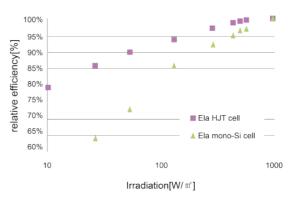
HIGHER BIFACIALITY

HJT Cell has nature bilateral structure, best choice for bifacial modules
Up to 30%+ additional power generation from HJT Bifacial module rear side

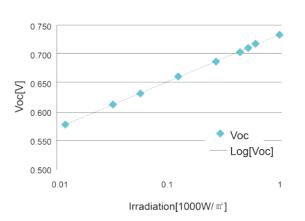
NATURE symmetrical structure OF HJT cell PRESENTS excellent color consistency

Installed Surface	Benefit VS Perc A	Benefit VS Perc B
Asphalt Pavement	13.3%	14.0%
cement pavement	12.9%	14.4%
Grass	15.4%	16.7%
White Stone Pavement	20.9%	24.5%
White Paint	33.3%	35.7%

The installation angle is 30°, location in California USA.


The Bifacial HJT module has 10.9% more power generation than HJT mono-facial module in a single year.

Grass	15.4%	16.7%
White Stone Pavement	20.9%	24.5%
White Paint	33.3%	35.7%


EXCELLENT WEAK-LIGHT PERFORMANCE

HJT cell applies the
N-type wafer while
Perc using P-Type
wafer. Under the
600W/m2 radiation,
N-type module has
1-2% more power
generation than
P-type Perc Module

Relative irradiance behaviour of the efficiency for a 5 inch HJT cell (red squares) compared to a mono-Si reference cell (green triangles).

(b) The VOC of a 5 inch HJT cell shows nearly perfect logarithmic dependence on irradiance.

HJT TECHNOLOGY PRICE PREMIUM ANALYZATION UNDER DIFFERENT CONDITION

HJT module can bring lower LCOE cost compared with other cell technologies.

Lower BOS cost

Higher Efficiency of HJT module, the Higher Unit Area generation, the lower BOS involved.

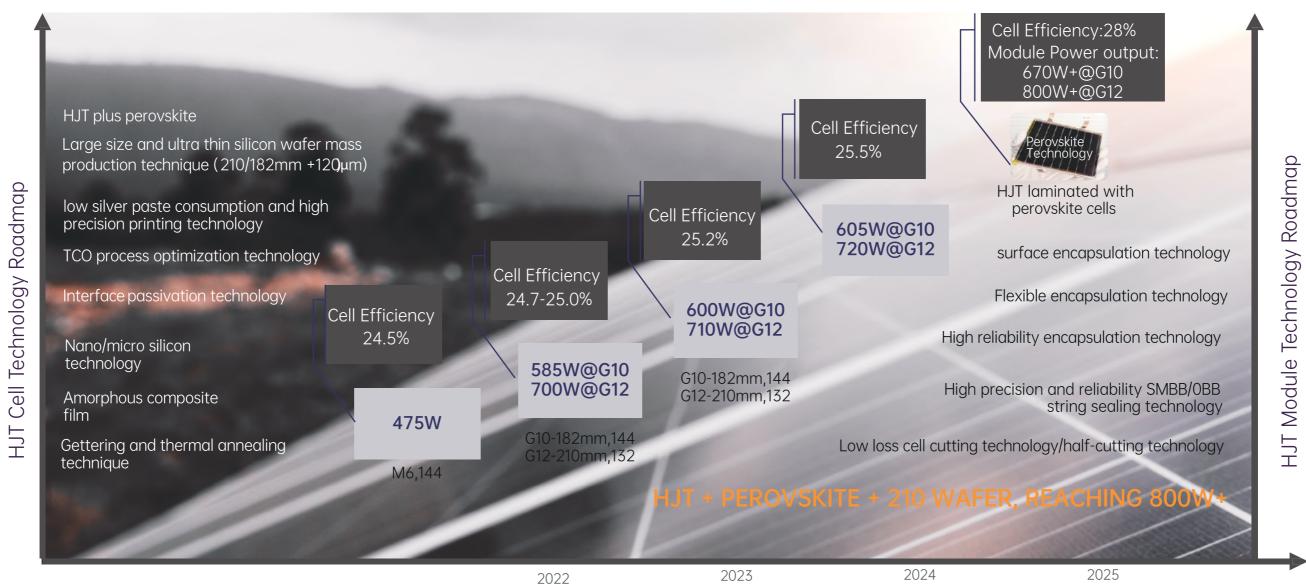
Longer Power Warranty

By the advantages of HJT lower power degradation, high bificiality and lower temperature coefficient, HJT module can generate more power.

Condition 1

Not considerate the Additional Generation of HJT technology

Condition 2


Only take the lower Degradation benefit of HJT under Consideration

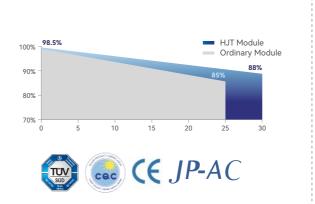
Condition 3

Comprehensive consideration of all HJT benefit


LCOE of HJT projects is 1.3% lower than PERC	Set LCOE at the same level	HJT modules have 3.2% price premium compared with PERC	Price of HJT module could be around 0.008\$ higher than PERC
LCOE of HJT projects is 3.4% lower than PERC	Set LCOE at the same level	HJT modules have 8% price premium com- pared with PERC	Price of HJT module could be 0.018\$ higher than PERC
LCOE of HJT projects is 4.3-8% lower than PERC	Set LCOE at the same level	HJT modules have 13.2% price premium compared with PERC	Price of HJT module could be 0.053\$ higher than PERC

GRAND SUNERGY HJT PRODUCT AND TECHNOLOGY ROADMAP

Chasing SERIES) (210 HJT)


HJT, 700W Good choice for large-scale projects

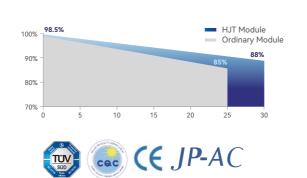
- **ॐ 700W** Maximum Power Output
- **22.53%** Maximum Module Efficiency
- ₺ -0.26%/°C industry leading negative temperature coefficient
- # 85% Bifaciality
- © 30 Years Linear Power Warranty

HJT, 590W Good choice for large-scale projects

- **№ 590W** Maximum Power Output
- **22.84%** Maximum Module Efficiency
- ₺ -0.26%/°C industry leading negative temperature coefficient
- 85% Bifaciality
- © 30 Years Linear Power Warranty

HJT, 435W Suitable for roof-top projects

- ② 22.25%


 Maximum Module Efficiency
- (b) -0.26%/°C industry leading negative temperature coefficient
- 85% Bifaciality
- © 30 Years
 Linear Power Warranty

(182 HJT)

HJT, 485W Applicable to multiple scenarios

- 22.35%
 Maximum Module Efficiency
- (b) -0.26%/°C industry leading negative temperature coefficient
- # 85%
 Bifaciality
- © 30Years
 Linear Power Warranty

17

HJT, up to 430W Excellent aesthetic appearance

430W

Maximum Power Output

21.99%

Maximum Module Efficiency

(b) -0.26%/°C industry leading negative temperature coefficient

85% Bifaciality

9 30Years

Linear Power Warranty